Chris Viets

(505) 659-1627 cviets@mgh.harvard.edu

github.com/cviets

chrisviets.com

in linkedin.com/in/chrviets

Education

Massachusetts Institute of Technology

May 2024

Cambridge, MA

- Double B.S. degrees in Physics and Biology. GPA: 4.9/5.0

 Relevant coursework: Systems Biology, Human Genetics and Genomics, Linear Algebra, Differential Equations, Genetics, Quantitative and Clinical Physiology, Metakaryotic Biology and Epidemiology

Research Experience

MGH Department of Neurology

August 2024 – present

Boston, MA

Advisor: Professor Brian Wainger

Generating and assaying iPSC models of amyotrophic lateral sclerosis (ALS)

- Probe genetic modifiers of ALS proteinopathy by generating CRISPRi knockdown iPSC lines, differentiating iPSCs into cortical neurons, and visualizing protein solubility, subcellular localization, and post-translational modifications via immunofluorescence and Western blotting
- Deploy advanced Python, MATLAB, and FIJI pipelines to streamline processing of high throughput imaging data, and quantify hallmarks of ALS neurodegeneration in processed images
- Perform high-content screening to assay genetic and pharmacological modifiers of neuronal survival and neurite outgrowth, elucidating molecular pathways for potential therapeutic intervention in ALS
- Conduct bioinformatic analyses of diverse ALS omics datasets to detect transcriptional signatures of ALS, such as non-coding RNA or GO terms that are differentially expressed across ALS models
- Develop workflows for analyzing human and mouse post-mortem immunohistochemistry images

MIT Department of Biological Engineering

Advisors: Professors Katharina Ribbeck and Angela Belcher

Immune cell motility in mucus

August 2022 – August 2024

Cambridge, MA

- Visualized 3-dimensional neutrophil trajectories in mucosal environments utilizing confocal microscopy, probing the influence of mucus on neutrophil chemotaxis, and phagocytosis
- Independently constructed comprehensive cell track analysis pipeline in Python (trackscan), instrumental in characterizing changes in cell motility and morphology caused by mucus

Bacterial motility in mucus

August 2022 - August 2024

Cambridge, MA

- Investigated how gram-positive and gram-negative bacteria move through the viscoelastic mucus network using fluorescence microscopy
- Conducted cell tracking of wildtype and flagella-mutant *E. coli* via fluorescence microscopy to determine how mutations in flagella affect movement through mucus
- Developed and deployed advanced data analysis protocols in Python and MATLAB that detect and rectify cell tracking artifacts, as well as accurately measure bacterial swimming speeds from corrected cell trajectories

MIT Department of Physics

December 2023 - May 2024

Cambridge, MA

Stability analysis of gene regulatory networks (GRNs)

- Independently established Python workflow (booleangene) to analyze the stability of GRNs
- Computationally predicted cell responses to a wide range of environmental stimuli by applying analysis to 80 published models of GRNs
- Employed stability analysis framework to investigate statistically significant correlations between GRNs and topological features of networks such as clusters and loops

University of New Mexico Department of Chemistry

Advisor: Professor John Grey

Charge transport in organic solar cells

Collaborated in developing Python and C++ models of organic photovoltaic solar cell devices

May – August 2020 May – August 2019 Albuquerque, NM

Publications

- <u>Viets, C.</u>, & Stevens, C. A. (2025). Measuring and Analyzing Bacterial Movement in Mucus. In I. Brockhausen (Ed.), *Dynamics of Bacteria-Mucus Interactions* (pp. 187–197). doi:10.1007/978-1-0716-4627-4_16
- Grimm, R. T., Deb, P., Walwark, D. J., Jr, <u>Viets, C.</u>, & Grey, J. K. (2020). Implications of Trap-Assisted Nongeminate Charge Recombination on Time- and Frequency-Domain Photocurrent Degradation Signatures of Organic Solar Cells. *The Journal of Physical Chemistry C*, 124(31), 16838–16848. doi:10.1021/acs.jpcc.0c05114

Relevant Skills

Bench techniques: Human iPSC & HEK-293 culture; lentivirus production; iPSC differentiation; RT-qPCR; Western blot;

immunofluorescence; high-content screening; time-lapse imaging; CRISPRi sgRNA design & production; bacterial transformation; scanning electron microscopy; isolation of neutrophils from whole human blood

Software: Python (+ SciPy, NumPy, PyTorch, pandas), MATLAB (+ image processing & parallel processing toolboxes),

FIJI (+ macros), R (+ Bioconductor packages), Bash (+ STAR, samtools, HTCondor, Slurm), Microsoft Office,

Adobe Illustrator, SnapGene, PyMOL, LaTeX, Java, JavaScript (+ React, NextJS), HTML/CSS

Languages: English (native), Spanish (native), French (fluent)

Presentations and Posters

Disruption of Autophagy and Endosomal Pathways Promotes TDP-43 Pathology
 Forthcoming poster: Society for Neuroscience 2025

 Clusters and Loops are Overly Abundant in Oscillatory Gene Regulatory Networks

April 2024

- Clusters and Loops are Overly Abundant in Oscillatory Gene Regulatory Networks

Poster: MIT Department of Biological Engineering undergraduate research symposium

January 2024

- Stable Fixed Points are Abundant in Boolean Gene Networks Presentation MIT Physics Directed Reading Program

April 2023

Mucins Enhance Neutrophil Motility

Poster: MIT Department of Biological Engineering undergraduate research symposium

- Dynamics of Spatially Extended Populations: Exploring the Fisher-Kolmogorov Equation Slides delivered for MIT Physics Directed Reading Program January 2023

Additional Coursework

AI@MBL (non-credit granting)

August – September 2024

Directed by Jan Funke (HHMI Janelia) and Shalin Mehta (CZ Biohub)

Woods Hole, MA

Two-week intensive course on developing, training, and applying deep-learning models to solve microscopy image analysis tasks such as denoising, segmentation, and object tracking

Harvard Extension School

January – May 2024

- Took Organic Chemistry of Life (equivalent to Organic Chemistry II) and Graduate Biochemistry, receiving an A, the highest possible grade, in both courses

Cambridge, MA

Awards

-	Sigma Pi Sigma physics honor society inductee	2024
-	MIT Koch Institute for Integrative Cancer Research Image Award co-recipient	2024
-	MIT Integration Bee qualifier	2023
-	SpeakOUT Boston LGBTQ Scholarship recipient	2022
-	Hispanic Scholarship Fund recipient	2020

Leadership and Teaching Experience

BioResearch Academy June – July 2024

Teaching and Residential Assistant

Boston, MA

Supported highly motivated and advanced high school students through a rigorous, three-week intensive summer biology course, with an emphasis on modeling Alzheimer's disease

MIT Department of Physics

January – May 2024

Student Mentor, Waves and Vibrations

Cambridge, MA

Cambridge, MA

- Guided mentees through practice problems and provided individualized exam preparation
- Advised newly declared physics majors through their first non-introductory physics course

MIT Department of Physics

January - May 2022

Teaching Assistant, Electricity and Magnetism

- Instructed small groups of students through practice problems, and graded exams and problem sets Student Mentor, Electricity and Magnetism

- Assisted mentees outside of class in course material and problems, and for the inquisitive, provided advanced instruction in topics beyond the course curriculum